Biodiversity Bibliography
Part 1
Economics and Management of Biodiversity

A Brief Bibliographical Survey
Prepared By: Dr. Gopal Kadekodi and Dr. Madhumita Mishra
Center for Multidisciplinary Development Research (CMDR)
August 2003

SANDEE Bibliography No. 4-03
Table of Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sustainability</td>
<td>1</td>
</tr>
<tr>
<td>2. Resilience</td>
<td>2</td>
</tr>
<tr>
<td>3. Valuation</td>
<td>4</td>
</tr>
<tr>
<td>4. Policy</td>
<td>8</td>
</tr>
<tr>
<td>5. Management</td>
<td>9</td>
</tr>
<tr>
<td>6. Conservation, Protection and Protected Areas</td>
<td>12</td>
</tr>
<tr>
<td>7. Impact Assessment</td>
<td>19</td>
</tr>
<tr>
<td>8. Endangered Species</td>
<td>20</td>
</tr>
<tr>
<td>9. Biodiversity Studies Related To South-Asian Region</td>
<td>21</td>
</tr>
<tr>
<td>10. Internet Websites on Biodiversity</td>
<td>24</td>
</tr>
</tbody>
</table>
Biodiversity – General

1: SUSTAINABILITY

2: RESILIENCE

Abstract: Economists have recently begun to consider the questions raised by the ecological concept of resilience – a measure of the degree to which a system can be perturbed before it switches from one stability domain to another. At a theoretical level, it has been argued that the loss of resilience in an ecological-economic system involves a change in its long-run productive potential, but no consideration has yet been given to the empirical investigation of this. This paper discusses an econometric approach to the problem, using the example of semi-arid rangelands. The long-run productive potential of the system is regarded as an unobserved state variable, change in which is irreversible or at least only slowly reversible. It is estimated by applying the extended (nonlinear) Kalman filter. The paper illustrates the approach using data from Botswana for the period 1965–1993. The maximum likelihood estimates of the parameters associated with the loss of resilience mechanism are non-zero. They indicate a small loss of resilience event at the end of the long drought in the 1980s. However, these parameters are
very imprecisely estimated and are therefore statistically insignificant. We find that the sensitivity of the system to exogenous shocks varies with fluctuations in both economic and non-economic parameters. Contrary to what is usually thought to be the case, the sensitivity of the system to exogenous shocks is only weakly affected by variations in offtake prices, but is very strongly affected by variations in the cost of herd maintenance. This suggests that offtake prices may be a weak tool for controlling the size of cattle stocks and preventing a loss of resilience. On the other hand, taxes on cattle stocks or grazing fees may be very effective.

3: VALUATION

Abstract: Rational economic decisions regarding the conservation of biodiversity require the consideration of all the benefits generated by this natural resource. Recently a number of categories of values (inherent value, contributory value, indirect value, infrastructure value, primary value) have been developed, especially in the literature of Ecological Economics, which, besides the individual and productive benefits of biodiversity, also include the utilitarian relevance of the ecological structure and functions of biodiversity in the, so-called, total economic value. For the question of including the ecological structure and functions of biodiversity in the total economic value it is of crucial importance to note, that these categories of values are not only terminologically different, but also relate to different ecological levels of biodiversity and – most importantly – to specific complementary relationships – between species, between elements of ecological structures and between ecological functions and their contribution to human well-being. This paper analyses these complementary relationships, discusses their implications for the total economic value of biodiversity and draws conclusions for decision making in environmental policy.

Abstract: Discusses the ways in which value can be attached to biodiversity and highlights the advantages and disadvantages of different approaches. Introduces biodiversity loss and biodiversity value. Distinguishes between economic and noneconomic value criteria and addresses some of the contrasting value systems being advanced in the global conservation debate. Discusses deliberative and inclusionary procedures for eliciting values. Introduces the concept of time discounting and considers how time preference rates may be altered to account for the specific dilemmas faced by biodiversity conservation. Spells out the economic interpretation of value and outlines the taxonomy of values associated with biodiversity. Discusses the range of economic valuation methods and their limitations, covering economic valuations based on market prices and stated preference methods. Describes the practice of benefits transfer, in which a estimate of willingness to pay from one site, the study site, is "borrowed" and applied to another site, the policy site. Provides policy recommendations.

4: POLICY

 Abstract: The rationale of ecolabelling is to enable firms to reap the willingness-to-pay for the environmental attributes of goods by helping consumers to identify “green” products. By so doing, ecolabelling is expected to stimulate spontaneous environmental innovation and to reduce aggregated pollution. Our analysis however outlines situations under which ecolabelling could induce perverse effects, namely increased investment in conventional technologies before the labels are awarded, and examines whether restricting the issue of labels could constitute an antidote.

5: MANAGEMENT

Abstract: This paper provides background information for a series of case studies discussed during a workshop of the 4th session of the Global Biodiversity Forum held 31 August - 1 September, 1996 in Montreal. The paper and workshop focused on the use of economic incentives for biodiversity conservation and particularly fiscal measures, collaborative management of conservation areas, and commercialization of biological resources. The paper also outlines a framework for Biodiversity Impact Assessment which could be used as a tool for correcting perverse incentives and creating positive incentive measures.

Abstract: The Convention on Biological Diversity mandates impact assessments of policies, programmes, and projects by Contracting Parties in order to ensure that environmental and particularly biodiversity consequences are considered. This workshop examines the role of economics in designing procedures for Biodiversity Impact Assessment (BIA). The author outlines a framework of seven steps for BIA: identify an impact, establish the causes, determine the winners and losers of the impact, propose mitigation, determine the winners and losers of mitigation, implement mitigation measures, and monitor and evaluate. He recommends that the Conference of the Parties call for the development of new procedures for BIA, support NGOs as providers of independent economic information, and continue to seek new financing for biodiversity conservation.

6: CONSERVATION, PROTECTION AND PROTECTED AREAS

Abstract: We optimize the trade-off between economic and ecological concerns in conservation biology by using a novel method to link a spatially explicit individual-based model to a dynamic programming model. To date, few optimality models have been presented to optimize this trade-off, especially when the common currency cannot be easily measured in dollars. We use a population simulation model (e.g. spatially explicit individual-based model) to model a hypothetical forest bird population’s response to different cutting and planting regimes. We then link these results to a dynamic programming model to determine the optimal choice a manager should make at each time step to minimize revenue foregone by not harvesting timber while maintaining a given population of birds. Our results show that if optimal management choices are made further back in time, future (terminal) reward may be greater. As the end of the management period approaches, past management practices influence the terminal reward more than future practices can. Thus if past revenue lost is high, the future reward will be low as compared to when past revenue lost is low. The general strategy of setting some minimum viable population size and then using a population simulator linked to a dynamic programming model to ask how to maintain such a population size with minimum economic loss should have nearly universal applicability in conservation biology.

(Online) URL:http://www.consecol.org/vol5/iss2/art32

Abstract: Recent literature shows a lively debate on how to capture ecological and environmental aspects in different evaluation methods and the closely related issue of the (im) possibilities of monetization of these aspects. Although economists in general tend to favour Cost-Benefit Analysis (CBA) above Multi-Criteria Analysis (MCA), part of the literature suggests that CBA falls short of being the only decision-making device for environmental problems, both for theoretical and practical reasons. This paper discusses both evaluation methods and the main results of a major, publicly-financed nature conservation project in
The Netherlands. The evaluation method combines the straightforwardness of CBA with the flexibility of MCA. Conceptually, it consists of a MCA, the net result of a CBA being integrated as one of the criteria. The different aspects of the nature conservation project that can be monetized are incorporated into the CBA. Other aspects such as changes in biodiversity or scenic beauty are analyzed in their own dimension, provided (cardinal) quantification is possible. In fact, the analysis consists of a very simple MCA, with two criteria: social costs and a quantitative measure of nature. Quantifying the amount of nature in its own, non-monetary dimension is a key element of the empirical analysis. A detailed quantitative estimate is made of the improvement of nature, based upon 564 species and 131 different ecosystems. The result of the evaluation is a trade-off at the national level between ecological improvements (plus 18 percent) and social costs (DF1. 3.4 billion net present value). Due to the detailed quantification of the effect on nature the evaluation also yields results about the cost-effectiveness of four different instruments to create and to preserve nature. That part of the analysis shows that complete withdrawal of agricultural land for nature purposes in the project in general is more cost-effective than subsidizing nature-friendly farming, although the former is more expensive.

Abstract: Twenty-three papers written over the period 1972-2001, all but two previously published, consider economic policies and institutional arrangements designed to improve the conservation, management, and use of nature by humans. Papers discuss world conservation strategy, economic policies, and sustainable resource use in developing countries; economics and the debate about preservation of species, crop varieties, and genetic diversity; safe minimum standards for the protection of species; whether the economic use of wildlife favors conservation and sustainability; how to combine biological conservation, sustainability, and economic growth; biodiversity conservation and the role of communities; the economic conservation and utilization of wildlife species; kangaroos as an economic resource; the economic management of kangaroos; population effects, wildlife, and the management of kangaroos; whether wildlife should be viewed as a national asset or a pest to be managed; conflicts about living marine resources in Southeast Asian and Australian waters; the International Whaling Commission and socially optimal whale harvests; the economics of Antarctic minke whale catches; optimal Australian dugong populations and conservation plans; the conservation of Asian elephants; the provision of parks and the preservation of nature; the economics of wilderness;
the provision of wilderness by clubs; policy issues related to the establishment and management of marine reserves; deforestation, capital accumulation, and lessons for the Kerinci-Seblat National Park, Indonesia; community-based forestry in Yunnan; and villagers and the use and conservation of Indian forests.

7: IMPACT ASSESSMENT

8: ENDANGERED SPECIES

9: BIODIVERSITY STUDIES RELATED TO SOUTH-ASIAN REGION

185. Edmonds, E.V. (2002): “Government-Initiated Community Resource Management and Local Resource Extraction from Nepal's Forests”, Journal of Development Economics, June 68(1): 89-115 [Renewable Resources and Conservation; Environmental Management Forestry (Q230); Formal and Informal Sectors; Shadow Economy; Institutional Arrangements (O170); Renewable Resources and Conservation; Environmental Management Government Policy (Q280); Forest; Forestry; Resources; Wood; Economic Development Agriculture; Natural Resources; Environment; Other Primary Products (O130)]

187. Garnaut, R. ed, (2002): “Resource management in Asia Pacific developing countries”, Canberra: Asia Pacific Press; distributed by International Specialized Book Services, Portland, Oreg., 2002; xv, 259. [Renewable Resources and Conservation; Environmental Management General (Q200); Developing Countries; Development; Natural Resource; Resources; Economic Development Agriculture; Natural Resources; Environment; Other Primary Products (O130)]

10. INTERNET WEBSITES ON BIODIVERSITY

1. World Conservation Union (IUCN) - Gland, Switzerland
 ! General website
 http://www.iucn.org/
 ! Economics of Biodiversity
 http://economics.iucn.org/index.htm
 ! Economics Service Unit
 http://economics.iucn.org/esu.htm

2. International Institute for Environment and Development (IIED) - London
 ! General website
 http://www.oneworld.org/iied/index.html

3. International Institute for Sustainable Development (IISD) - Winnipeg, Canada
 ! General website
 http://iisd.ca/

4. Organisation for Economic Co-operation and Development (OECD) - Paris
 ! General website
 http://www.oecd.org/

5. World Resources Institute (WRI) - Washington
 ! General website
 http://www.wri.org/

6. United Nations Organisations
 ! Food and Agriculture Organisation
 http://www.fao.org/
 ! United Nations Environment Programme
 http://www.unep.org/
 ! United Nations Development Programme
 http://www.undp.org/indexalt.html

7. Convention on Biodiversity
 http://www.biodiv.org/

8. Economy and Environment Programme for South East Asia (EEPSEA)
 http://www.eepsea.org

10. EnviroLink Homepage
 http://envirolink.netforchange.com
11. Environment Australia On-Line
 http://www.erin.gov.au

12. Environment Canada’s Green Lane
 http://www.ec.gc.ca

13. Environmental Data Services Ltd (ENDS)
 http://www.ends.co.uk

14. Nature Conservation
 http://www.naturenet.net

15. Environmental Protection Agency: Economy and Environment
 http://www.epa.gov/docs/oppe/eaed/eedhmpg.htm

16. Environmental Valuation
 http://www.environment.detr.gov.uk/evslist/index.htm

REGIONAL LINKS FOR SSEA

Centre for Science and Environment-India

Biodiversity Profile for India
 http://www.wcmc.org.uk/igcmc/main.html

Malaysia Biodiversity On-line
 http://biodiversity.ukm.my/

Maldives Rio+5 Summary Report
 http://www.ecouncil.ac.ar/rio/natreg/english/nep.htm

Nepalnet Website-Introduction to Ecology & Biodiversity in Nepal
 http://www.panasia.org.sg/nepalnet/bioframe.htm

Pakistan-WRI Biodiversity Guide to Pakistan

Philippines- Biodiversity Conservation in the Philippines
 http://www.bwf.org/fpebio.html

Philippines- Conservation International- Biodiversity Hotspot Profile
 http://www.conservation.org/web/fieldact/hotspots/philippi.htm
Singapore-WRI Biodiversity in Singapore
http://www.wri.org/wri/data/dces-861.html

Thailand- Biodiversity Research and Training Program
http://www.brtprogram.org/dat/about.html

Vietnam- Biodiversity Profile of the Socialist Republic of Vietnam
http://www.brtprogram.org/dat/about.html